Current Issue : April-June Volume : 2023 Issue Number : 2 Articles : 5 Articles
Rapid serial visual presentation (RSVP) is currently one of the most suitable paradigms for use with a visual brain–computer interface based on event-related potentials (ERP-BCI) by patients with a lack of ocular motility. However, gaze-independent paradigms have not been studied as closely as gaze-dependent ones, and variables such as the sizes of the stimuli presented have not yet been explored under RSVP. Hence, the aim of the present work is to assess whether stimulus size has an impact on ERP-BCI performance under the RSVP paradigm. Twelve participants tested the ERP-BCI under RSVP using three different stimulus sizes: small (0.1 × 0.1 cm), medium (1.9 × 1.8 cm), and large (20.05 × 19.9 cm) at 60 cm. The results showed significant differences in accuracy between the conditions; the larger the stimulus, the better the accuracy obtained. It was also shown that these differences were not due to incorrect perception of the stimuli since there was no effect from the size in a perceptual discrimination task. The present work therefore shows that stimulus size has an impact on the performance of an ERP-BCI under RSVP. This finding should be considered by future ERP-BCI proposals aimed at users who need gaze-independent systems....
Brain-computer interface (BCI) technology is a developing field of study with numerous applications. The purpose of this paper is to discuss the use of brain signals as a direct communication pathway to an external device. In this work, Zombie Jumper is developed, which consists of 2 brain commands, imagining moving forward and blinking. The goal of the game is to jump over static or moving “zombie” characters in order to complete the level. To record the raw EEG data, a Muse 2 headband is used, and the OpenViBE platform is employed to process and classify the brain signals. The Unity engine is used to build the game, and the lab streaming layer (LSL) protocol is the connective link between Muse 2, OpenViBE and the Unity engine for this BCI-controlled game. A total of 37 subjects tested the game and played it at least 20 times. The average classification accuracy was 98.74%, ranging from 97.06% to 99.72%. Finally, playing the game for longer periods of time resulted in greater control....
Brain–computer interfaces (BCIs) are successfully used for stroke rehabilitation, but the training is repetitive and patients can lose the motivation to train. Moreover, controlling the BCI may be difficult, which causes frustration and leads to even worse control. Patients might not adhere to the regimen due to frustration and lack of motivation/engagement. The aim of this study was to implement three performance accommodation mechanisms (PAMs) in an online motor imagerybased BCI to aid people and evaluate their perceived control and frustration. Nineteen healthy participants controlled a fishing game with a BCI in four conditions: (1) no help, (2) augmented success (augmented successful BCI-attempt), (3) mitigated failure (turn unsuccessful BCI-attempt into neutral output), and (4) override input (turn unsuccessful BCI-attempt into successful output). Each condition was followed-up and assessed with Likert-scale questionnaires and a post-experiment interview. Perceived control and frustration were best predicted by the amount of positive feedback the participant received. PAM-help increased perceived control for poor BCI-users but decreased it for good BCI-users. The input override PAM frustrated the users the most, and they differed in how they wanted to be helped. By using PAMs, developers have more freedom to create engaging stroke rehabilitation games....
The research on the electroencephalography (EEG)-based brain–computer interface (BCI) is widely utilized for wheelchair control. The ability of the user is one factor of BCI efficiency. Therefore, we focused on BCI tasks and protocols to yield high efficiency from the robust EEG features of individual users. This study proposes a task-based brain activity to gain the power of the alpha band, which included eyes closed for alpha response at the occipital area, attention to an upward arrow for alpha response at the frontal area, and an imagined left/right motor for alpha event-related desynchronization at the left/right motor cortex. An EPOC X neuroheadset was used to acquire the EEG signals. We also proposed user proficiency in motor imagery sessions with limb movement paradigms by recommending motor imagination tasks. Using the proposed system, we verified the feature extraction algorithms and command translation. Twelve volunteers participated in the experiment, and the conventional paradigm of motor imagery was used to compare the efficiencies. With utilized user proficiency in motor imagery, an average accuracy of 83.7% across the left and right commands was achieved. The recommended MI paradigm via user proficiency achieved an approximately 4% higher accuracy than the conventional MI paradigm. Moreover, the real-time control results of a simulated wheelchair revealed a high efficiency based on the time condition. The time results for the same task as the joystick-based control were still approximately three times longer. We suggest that user proficiency be used to recommend an individual MI paradigm for beginners. Furthermore, the proposed BCI system can be used for electric wheelchair control by people with severe disabilities....
Human–computer interaction tends to be intelligent and driven by technological innovation. However, there is a digital divide caused by usage barriers for older users when interacting with complex tasks. To better help elderly users efficiently complete complex interactions, a smart home’s operating system’s interface is used as an example to explore the usage characteristics of elderly users of different genders. This study uses multi-signal physiological acquisition as a criterion. The results of the study showed that: (1) Older users are more attracted to iconic information than textual information. (2) When searching for complex tasks, female users are more likely to browse the whole page before locating the job. (3) Female users are more likely to browse from top to bottom when searching for complex tasks. (4) Female users are more likely to concentrate when performing complex tasks than male users. (5) Males are more likely to be nervous than females when performing complex tasks....
Loading....